Commercial and industrial energy storage
Commercial and Industrial Energy Storage
1737451508966
Home Energy Storage
pexels-peterfazekas-997131
Drones
pexels-cookiecutter-1148820
Telecom Backup Power
Low-Speed Electric Vehicles
Low-Speed Electric Vehicles
Compact RV Travel
RV Power
forklift
Forklift Truck
Lead To Lithium Conversion
Lead To Lithium Conversion

Battery Cells

Battery cell is the smallest energy unit of the battery system, realizing the storage and release of electric energy through electrochemical reactions. Its performance directly determines the energy density, life and safety of the battery module and system, which can be categorized into lithium ternary (NCM/NCA), lithium iron phosphate (LFP), lithium cobalt oxide (LCO),  Lithium manganese iron phosphate(LTO) and other types according to the material system.

Battery-Cells-1
F11215316L 3.2V 75Ah LFP

Maximum continuous discharge: 0.5C

Maximum continuous charging: 0.5C

Cycle life: ≥ 2000 times

Cell weight:~1406g

F15215316L 3.2V 100Ah LFP

Maximum continuous discharge: 0.5C

Maximum continuous charging: 0.5C

Cycle life: ≥ 2000 times

Cell weight:~1870g

F11165245 3.2V 40Ah LFP

Maximum continuous discharge: 0.5C

Maximum continuous charging: 0.5C

Cycle life: ≥ 2000 times

Cell weight:~767g

F13165245L 3.2V 50Ah LFP

Maximum continuous discharge: 0.5C

Maximum continuous charging: 0.5C

Cycle life: ≥ 2000 times

Cell weight:~940g

F11145262 3.2V 47Ah LFP

Maximum continuous discharge: 0.5C

Maximum continuous charging: 0.5C

Cycle life: ≥ 2000 times

Cell weight:~855g

F95155262H 3.2V 40Ah LFP

Maximum continuous discharge: 0.5C

Maximum continuous charging: 0.5C

Cycle life: ≥ 2000 times

Cell weight:~755g

F95161260H 3.2V 40Ah LFP

Maximum continuous discharge: 0.5C

Maximum continuous charging: 0.5C

Cycle life: ≥ 2000 times

Cell weight:~760g

F11161260H 3.2V 50Ah LFP

Maximum continuous discharge: 0.5C

Maximum continuous charging: 0.5C

Cycle life: ≥ 2000 times

Cell weight:~890g

Products Categories
Get A Free Quote
Contact Form Demo (#3)

Applications

Agricultural-Drone-Spraying_结果
Agricultural Drone Spraying

Crop spraying operations requiring extended flight time, fast charging, and support for frequent takeoffs/landings in high-intensity environments.

Military-equipment-scaled_结果
Military equipment

Designed for military equipment, delivering reliable power for extended surveillance, environmental reconnaissance, and patrol missions in extreme climates and harsh battlefield conditions.

Drone-Surveillance-Inspection-1_结果
Drone Surveillance & Inspection

Environmental monitoring, security patrols, or equipment checks; requires weather-resistant operation and persistent endurance.

Home-Energy-Storage_
Home Energy Storage

Stores solar/grid power for household use, prioritizing safety and stable long-term charge/discharge cycles.

Electric-Forklift-Power
Electric Forklift Power

Replaces lead-acid batteries for longer runtime and rapid charging in warehouse logistics.

Electric-Vehicles-scaled
Electric Vehicle Power

High-density battery cells provide longer range and ultra-fast charging to optimize EV efficiency and quickly replenish power.

FREE DESIGN

Customized exclusive battery plans! Professional engineers plan battery programs one-on-one.

Maximize Drone Effect with Our Tailored Battery Solutions

德国EES-Propose Requests_结果
Propose Requests
Customized Solutions_结果
Customized Solutions
End-to-End Controlled Production & Testing_结果
End-to-End Controlled Production & Testing
Warehouse and shipped out_结果
Warehouse and shipped out

Explore Herewin Factory: The Source of Quality

Founded in 2019, Shenzhen Jarwin Time Technology Co., Ltd. is backed by a founding and operational team with over 20 years of extensive experience in the battery industry. It specializes in developing and producing high-performance lithium-ion polymer batteries.
Gain a comprehensive insight into who we are and what we stand for. By exploring the meticulous precision of our
production lines, the efficient management of our factories, and the genuine feedback from our satisfied customers,
you’ll see how we ensure excellence at every step of the process

Different Services For Clients With Different Patterns

FOR OFFLINE CLIENTS

Flexible Delivery Time

Reliable delivery schedules and warehousing support.

High Cost-Effectiveness

Competitive pricing to maximize overall value.

Wide Product Selection

Diverse options to cater to all market segments.

FOR ONLINE CLIENTS

Low MOQ

Flexible MOQ with mixed product options.

Custom Logo

Personalized logo customization for small batches.

One-Stop Marketing Package

Provide quality images, videos to enhance sales revenue.

FOR BRAND CLIENTS

Exclusive Regional Rights

Provide all of herewin's resources and capabilities

R&D Resources

Custom sample within 7 days with R&D capabilities.

Fast Delivery

Efficient production and ship within 25 days at the fastest.

Production Flow of Battery Cells

Mixing​
Step 1 :Mixing​

Blends active materials, binders, and solvents into a uniform slurry to ensure consistent electrochemical performance.

Coating
Step 2 :Coating

Spreads the slurry onto metal foils (anode/cathode) with precise thickness control for optimal energy density.

Drying
Step 3 :Drying

Removes solvents from coated electrodes to stabilize material adhesion and prevent cracking.

Coating&Winding
Step 4 :Coating & Winding

Combines anode/cathode layers with separators and winds them into a compact jellyroll structure.

Pressuring Film
Step 5 :Pressuring Film

Compresses electrodes to enhance density and conductivity while maintaining porosity for ion flow.

Making Film​
Step 6 :Making Film​

Trims electrodes into precise dimensions to fit battery cell specifications.

Stacking
Step 7 :Stacking

Aligns anode/separator/cathode layers in a Z-fold pattern to maximize space efficiency.

Welding
Step 8 :Welding

Joins electrode tabs using laser welding to minimize resistance and ensure current stability.

Encapsulation​
Step 9 :Encapsulation​

Seals cells in aluminum-plastic film to protect against moisture, dust, and mechanical stress.

Baking
Step 10 :Baking

Removes residual moisture from cells under vacuum to prevent electrolyte degradation.

Injection
Step 11 :Injection

Fills electrolyte into cells to enable ion transport between electrodes.

Charging
Step 12 :Charging

Activates cells with initial charging to form a stable solid-electrolyte interface (SEI).

Extracting Air​
Step 13 :Extracting Air​

Evacuates gas from cells to eliminate air pockets and ensure full electrolyte penetration.

Charging and Discharging​
Step 14 :Charging and Discharging​

Cycles cells to stabilize performance and screen out defects before final assembly.

Testing
Step 15 :Testing

Validates capacity, impedance, and safety (e.g., overcharge, short-circuit) under strict protocols.

Assembling​
Step 16 :Assembling​

Integrates cells into modules or packs with BMS, wiring, and thermal management systems.

LEARN MORE DETAIL

Learn more about production details and manufacturing process

Testing Process

Fair&Certification

Certifications are herewin’s greatest strength.
Meets the needs of all markets, and the source factories are fully certified to ensure quality.

Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title
Default Title

GET IN TOUCH

Want to know what credentials your market needs? Contact me to send you a high resolution image

Related category

Drone-Battery-2
Home-Energy-Storage-Solutions
Semi-solid-Battery
Industrial-EV-Battery-Packs
Commercial &Industrial Energy Storage Solutions

FAQs

What distinguishes Li-ion polymer cells from traditional lithium batteries?

Li-ion polymer cells utilize gel polymer electrolyte technology, offering key differences compared to traditional liquid lithium batteries:

Electrolyte Composition

  • Hybrid gel polymer + liquid electrolyte (vs. pure liquid electrolyte in traditional cells).

Safety Improvements

  • 60% lower leakage risk and 40% reduced combustion potential.

Structural Advantages

  • 30% smaller volume, 20% lighter weight, and support for flexible/custom shapes.

Performance Metrics

  • Energy Density: 170-350 Wh/kg
    (Traditional liquid: 160-170 Wh/kg; Semi-solid energy storage series: 170-190 Wh/kg; High-density semi-solid series: 300-350 Wh/kg).

  • Charging Efficiency: 50% faster than traditional batteries.

  • Cycle Life: ≥2,000 cycles.

What are the core advantages of polymer cells?
  1. Safety

    • Passes nail penetration and crush tests.

    • Stable operation at 70-80°C (158-176°F).

    • UL/CE certified.

  2. Charging Performance

    • 30-minute fast charging (up to 80% capacity).

    • Compatible with mainstream fast-charging protocols.

  3. Sustainability

    • ≥2,000-cycle lifespan.

    • 95% material recyclability rate.

  4. Compact Design

    • 30% smaller size and 20% lighter weight vs. traditional cells.

Where are polymer cells commonly used?

Mainstream Applications

  • Consumer Electronics: Smartphones, TWS earbuds (prioritizing slim designs + fast charging).

  • New Energy Vehicles: Power batteries (20% range increase), flexible in-car displays.

  • Industrial Energy Storage: Residential energy storage systems (safety + longevity), backup power units.

Emerging Applications

  • IoT sensors (flexible integration), vaping devices (miniaturization), wearables.

Related Blog

How to Select Reliable Batteries for Rescue Drones in Harsh Conditions
Select reliable rescue drone batteries that perform well in extreme environments. Understand the impact of temperature on battery reliability.
High-Safety Energy Storage in Turkey'
                style=
High-safety energy storage is vital for Turkey’s renewable energy transition, ensuring grid stability and efficient energy management.
Advanced Battery Solutions for Electric Boats and Yachts
Advanced battery solutions enhance electric boats’ performance and sustainability, offering lightweight, efficient options like lithium-ion technology.
FPV Drone Battery Guide 2025: Choosing, Maintaining, and Maximizing Performance
FPV Drone Battery Guide 2025 covers how to choose, maintain, and maximize battery performance for longer, safer, and more powerful FPV flights.
How to Choose the Right UPS Battery for Business-Critical Data Centers
Choose the right industrial UPS battery for your data center with reliable power backup and advanced battery solutions tailored to your business needs.
How to Pick the Right Fast-Charging Battery for Field and Emergency Needs
Choose the best fast-charging batteries for field and emergency use by balancing portability, safety, charging speed, and capacity for reliable power.

Our New Catalogue

Learn more about battery cell, and the full range of products

en_USEnglish
Scroll to Top

Get A Free Quote Now !

Contact Form Demo (#3)
If you have any questions, please do not hesitate to contact us.